通過總結(jié),我們可以更好地認(rèn)清自己的成長和進步,并找到改進的方向。在寫總結(jié)之前,先進行資料收集和整理是非常重要的。以下是小編為大家收集的總結(jié)范文,僅供參考,希望對大家有所幫助。
數(shù)學(xué)知識點總結(jié)與思考篇一
初中數(shù)學(xué)教學(xué),注重培養(yǎng)學(xué)生正確的數(shù)學(xué)情操和幾何思維能力。初中怎樣學(xué)好數(shù)學(xué)?下面給大家介紹初中數(shù)學(xué)知識點總結(jié)歸納,趕緊來看看吧!
有理數(shù)的加法運算。
同號兩數(shù)來相加,絕對值加不變號。
異號相加大減小,大數(shù)決定和符號。
互為相反數(shù)求和,結(jié)果是零須記好。
【注】“大”減“小”是指絕對值的大小。
有理數(shù)的減法運算。
減正等于加負(fù),減負(fù)等于加正。
有理數(shù)的乘法運算符號法則。
同號得正異號負(fù),一項為零積是零。
合并同類項。
說起合并同類項,法則千萬不能忘。
只求系數(shù)代數(shù)和,字母指數(shù)留原樣。
去、添括號法則。
去括號或添括號,關(guān)鍵要看連接號。
擴號前面是正號,去添括號不變號。
括號前面是負(fù)號,去添括號都變號。
解方程。
已知未知鬧分離,分離要靠移完成。
移加變減減變加,移乘變除除變乘。
平方差公式。
兩數(shù)和乘兩數(shù)差,等于兩數(shù)平方差。
積化和差變兩項,完全平方不是它。
完全平方公式。
二數(shù)和或差平方,展開式它共三項。
首平方與末平方,首末二倍中間放。
和的平方加聯(lián)結(jié),先減后加差平方。
完全平方公式。
首平方又末平方,二倍首末在中央。
和的平方加再加,先減后加差平方。
解一元一次方程。
先去分母再括號,移項變號要記牢。
同類各項去合并,系數(shù)化“1”還沒好。
求得未知須檢驗,回代值等才算了。
解一元一次方程。
先去分母再括號,移項合并同類項。
系數(shù)化1還沒好,準(zhǔn)確無誤不白忙。
因式分解與乘法。
和差化積是乘法,乘法本身是運算。
積化和差是分解,因式分解非運算。
因式分解。
兩式平方符號異,因式分解你別怕。
兩底和乘兩底差,分解結(jié)果就是它。
兩式平方符號同,底積2倍坐中央。
因式分解能與否,符號上面有文章。
同和異差先平方,還要加上正負(fù)號。
同正則正負(fù)就負(fù),異則需添冪符號。
因式分解。
一提二套三分組,十字相乘也上數(shù)。
四種方法都不行,拆項添項去重組。
重組無望試求根,換元或者算余數(shù)。
多種方法靈活選,連乘結(jié)果是基礎(chǔ)。
同式相乘若出現(xiàn),乘方表示要記住。
【注】一提(提公因式)二套(套公式)。
因式分解。
一提二套三分組,叉乘求根也上數(shù)。
五種方法都不行,拆項添項去重組。
對癥下藥穩(wěn)又準(zhǔn),連乘結(jié)果是基礎(chǔ)。
二次三項式的因式分解。
先想完全平方式,十字相乘是其次。
兩種方法行不通,求根分解去嘗試。
比和比例。
兩數(shù)相除也叫比,兩比相等叫比例。
外項積等內(nèi)項積,等積可化八比例。
分別交換內(nèi)外項,統(tǒng)統(tǒng)都要叫更比。
同時交換內(nèi)外項,便要稱其為反比。
前后項和比后項,比值不變叫合比。
前后項差比后項,組成比例是分比。
兩項和比兩項差,比值相等合分比。
前項和比后項和,比值不變叫等比。
解比例。
外項積等內(nèi)項積,列出方程并解之。
求比值。
由已知去求比值,多種途徑可利用。
活用比例七性質(zhì),變量替換也走紅。
消元也是好辦法,殊途同歸會變通。
正比例與反比例。
商定變量成正比,積定變量成反比。
正比例與反比例。
變化過程商一定,兩個變量成正比。
變化過程積一定,兩個變量成反比。
判斷四數(shù)成比例。
四數(shù)是否成比例,遞增遞減先排序。
兩端積等中間積,四數(shù)一定成比例。
判斷四式成比例。
四式是否成比例,生或降冪先排序。
兩端積等中間積,四式便可成比例。
比例中項。
成比例的四項中,外項相同會遇到。
有時內(nèi)項會相同,比例中項少不了。
比例中項很重要,多種場合會碰到。
成比例的四項中,外項相同有不少。
有時內(nèi)項會相同,比例中項出現(xiàn)了。
同數(shù)平方等異積,比例中項無處逃。
根式與無理式。
表示方根代數(shù)式,都可稱其為根式。
根式異于無理式,被開方式無限制。
被開方式有字母,才能稱為無理式。
無理式都是根式,區(qū)分它們有標(biāo)志。
被開方式有字母,又可稱為無理式。
求定義域。
求定義域有講究,四項原則須留意。
負(fù)數(shù)不能開平方,分母為零無意義。
指是分?jǐn)?shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,滿足多個不等式。
求定義域要過關(guān),四項原則須注意。
負(fù)數(shù)不能開平方,分母為零無意義。
分?jǐn)?shù)指數(shù)底正數(shù),數(shù)零沒有零次冪。
限制條件不唯一,不等式組求解集。
解一元一次不等式。
先去分母再括號,移項合并同類項。
系數(shù)化“1”有講究,同乘除負(fù)要變向。
先去分母再括號,移項別忘要變號。
同類各項去合并,系數(shù)化“1”注意了。
同乘除正無防礙,同乘除負(fù)也變號。
解一元一次不等式組。
大于頭來小于尾,大小不一中間找。
大大小小沒有解,四種情況全來了。
同向取兩邊,異向取中間。
中間無元素,無解便出現(xiàn)。
幼兒園小鬼當(dāng)家,(同小相對取較小)。
敬老院以老為榮,(同大就要取較大)。
軍營里沒老沒少。(大小小大就是它)。
大大小小解集空。(小小大大哪有哇)。
解一元二次不等式。
首先化成一般式,構(gòu)造函數(shù)第二站。
判別式值若非負(fù),曲線橫軸有交點。
a正開口它向上,大于零則取兩邊。
代數(shù)式若小于零,解集交點數(shù)之間。
方程若無實數(shù)根,口上大零解為全。
小于零將沒有解,開口向下正相反。
用平方差公式因式分解。
異號兩個平方項,因式分解有辦法。
兩底和乘兩底差,分解結(jié)果就是它。
用完全平方公式因式分解。
兩平方項在兩端,底積2倍在中部。
同正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,方正倍積要為負(fù)。
兩邊為負(fù)中間正,底差平方相反數(shù)。
一平方又一平方,底積2倍在中路。
三正兩底和平方,全負(fù)和方相反數(shù)。
分成兩底差平方,兩端為正倍積負(fù)。
兩邊若負(fù)中間正,底差平方相反數(shù)。
用公式法解一元二次方程。
要用公式解方程,首先化成一般式。
調(diào)整系數(shù)隨其后,使其成為最簡比。
確定參數(shù)abc,計算方程判別式。
判別式值與零比,有無實根便得知。
有實根可套公式,沒有實根要告之。
用常規(guī)配方法解一元二次方程。
左未右已先分離,二系化“1”是其次。
一系折半再平方,兩邊同加沒問題。
左邊分解右合并,直接開方去解題。
該種解法叫配方,解方程時多練習(xí)。
用間接配方法解一元二次方程。
已知未知先分離,因式分解是其次。
調(diào)整系數(shù)等互反,和差積套恒等式。
完全平方等常數(shù),間接配方顯優(yōu)勢。
【注】恒等式。
解一元二次方程。
方程沒有一次項,直接開方最理想。
如果缺少常數(shù)項,因式分解沒商量。
b、c相等都為零,等根是零不要忘。
b、c同時不為零,因式分解或配方,
也可直接套公式,因題而異擇良方。
正比例函數(shù)的鑒別。
判斷正比例函數(shù),檢驗當(dāng)分兩步走。
一量表示另一量,有沒有。
若有再去看取值,全體實數(shù)都需要。
區(qū)分正比例函數(shù),衡量可分兩步走。
一量表示另一量,是與否。
若有還要看取值,全體實數(shù)都要有。
正比例函數(shù)的圖象與性質(zhì)。
正比函數(shù)圖直線,經(jīng)過和原點。
k正一三負(fù)二四,變化趨勢記心間。
k正左低右邊高,同大同小向爬山。
k負(fù)左高右邊低,一大另小下山巒。
一次函數(shù)。
一次函數(shù)圖直線,經(jīng)過點。
k正左低右邊高,越走越高向爬山。
k負(fù)左高右邊低,越來越低很明顯。
k稱斜率b截距,截距為零變正函。
反比例函數(shù)。
反比函數(shù)雙曲線,經(jīng)過點。
k正一三負(fù)二四,兩軸是它漸近線。
k正左高右邊低,一三象限滑下山。
k負(fù)左低右邊高,二四象限如爬山。
二次函數(shù)。
二次方程零換y,二次函數(shù)便出現(xiàn)。
全體實數(shù)定義域,圖像叫做拋物線。
拋物線有對稱軸,兩邊單調(diào)正相反。
a定開口及大小,線軸交點叫頂點。
頂點非高即最低。上低下高很顯眼。
如果要畫拋物線,平移也可去描點,
提取配方定頂點,兩條途徑再挑選。
列表描點后連線,平移規(guī)律記心間。
左加右減括號內(nèi),號外上加下要減。
二次方程零換y,就得到二次函數(shù)。
圖像叫做拋物線,定義域全體實數(shù)。
a定開口及大小,開口向上是正數(shù)。
絕對值大開口小,開口向下a負(fù)數(shù)。
拋物線有對稱軸,增減特性可看圖。
線軸交點叫頂點,頂點縱標(biāo)最值出。
如果要畫拋物線,描點平移兩條路。
提取配方定頂點,平移描點皆成圖。
列表描點后連線,三點大致定全圖。
若要平移也不難,先畫基礎(chǔ)拋物線,
頂點移到新位置,開口大小隨基礎(chǔ)。
【注】基礎(chǔ)拋物線。
直線、射線與線段。
直線射線與線段,形狀相似有關(guān)聯(lián)。
直線長短不確定,可向兩方無限延。
射線僅有一端點,反向延長成直線。
線段定長兩端點,雙向延伸變直線。
兩點定線是共性,組成圖形最常見。
角
一點出發(fā)兩射線,組成圖形叫做角。
共線反向是平角,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
直平之間是鈍角,平周之間叫優(yōu)角。
互余兩角和直角,和是平角互補角。
一點出發(fā)兩射線,組成圖形叫做角。
平角反向且共線,平角之半叫直角。
平角兩倍成周角,小于直角叫銳角。
鈍角界于直平間,平周之間叫優(yōu)角。
和為直角叫互余,互為補角和平角。
證等積或比例線段。
等積或比例線段,多種途徑可以證。
證等積要改等比,對照圖形看特征。
共點共線線相交,平行截比把題證。
三點定型十分像,想法來把相似證。
圖形明顯不相似,等線段比替換證。
換后結(jié)論能成立,原來命題即得證。
實在不行用面積,射影角分線也成。
只要學(xué)習(xí)肯登攀,手腦并用無不勝。
解無理方程。
一無一有各一邊,兩無也要放兩邊。
乘方根號無蹤跡,方程可解無負(fù)擔(dān)。
兩無一有相對難,兩次乘方也好辦。
特殊情況去換元,得解驗根是必然。
解分式方程。
先約后乘公分母,整式方程轉(zhuǎn)化出。
特殊情況可換元,去掉分母是出路。
求得解后要驗根,原留增舍別含糊。
列方程解應(yīng)用題。
列方程解應(yīng)用題,審設(shè)列解雙檢答。
審題弄清已未知,設(shè)元直間兩辦法。
列表畫圖造方程,解方程時守章法。
檢驗準(zhǔn)且合題意,問求同一才作答。
添加輔助線。
學(xué)習(xí)幾何體會深,成敗也許一線牽。
分散條件要集中,常要添加輔助線。
畏懼心理不要有,其次要把觀念變。
熟能生巧有規(guī)律,真知灼見靠實踐。
圖中已知有中線,倍長中線把線連。
旋轉(zhuǎn)構(gòu)造全等形,等線段角可代換。
多條中線連中點,便可得到中位線。
倘若知角平分線,既可兩邊作垂線。
也可沿線去翻折,全等圖形立呈現(xiàn)。
角分線若加垂線,等腰三角形可見。
角分線加平行線,等線段角位置變。
已知線段中垂線,連接兩端等線段。
輔助線必畫虛線,便與原圖聯(lián)系看。
兩點間距離公式。
同軸兩點求距離,大減小數(shù)就為之。
與軸等距兩個點,間距求法亦如此。
平面任意兩個點,橫縱標(biāo)差先求值。
差方相加開平方,距離公式要牢記。
矩形的判定。
任意一個四邊形,三個直角成矩形;。
對角線等互平分,四邊形它是矩形。
已知平行四邊形,一個直角叫矩形;。
兩對角線若相等,理所當(dāng)然為矩形。
菱形的判定。
任意一個四邊形,四邊相等成菱形;。
四邊形的對角線,垂直互分是菱形。
已知平行四邊形,鄰邊相等叫菱形;。
兩對角線若垂直,順理成章為菱形。
概念課。
要重視教學(xué)過程,要積極體驗知識產(chǎn)生、發(fā)展的過程,要把知識的來龍去脈搞清楚,認(rèn)識知識發(fā)生的過程,理解公式、定理、法則的推導(dǎo)過程,改變死記硬背的方法,這樣我們就能從知識形成、發(fā)展過程當(dāng)中,理解到學(xué)會它的樂趣;在解決問題的過程中,體會到成功的喜悅。
習(xí)題課。
要掌握“聽一遍不如看一遍,看一遍不如做一遍,做一遍不如講一遍,講一遍不如辯一辯”的訣竅。除了聽老師講,看老師做以外,要自己多做習(xí)題,而且要把自己的體會主動、大膽地講給大家聽,遇到問題要和同學(xué)、老師辯一辯,堅持真理,改正錯誤。在聽課時要注意老師展示的解題思維過程,要多思考、多探究、多嘗試,發(fā)現(xiàn)創(chuàng)造性的證法及解法,學(xué)會“小題大做”和“大題小做”的解題方法,即對選擇題、填空題一類的客觀題要認(rèn)真對待絕不粗心大意,就像對待大題目一樣,做到下筆如有神;對綜合題這樣的大題目不妨把“大”拆“小”,以“退”為“進”,也就是把一個比較復(fù)雜的問題,拆成或退為最簡單、最原始的問題,把這些小題、簡單問題想通、想透,找出規(guī)律,然后再來一個飛躍,進一步升華,就能湊成一個大題,即退中求進了。如果有了這種分解、綜合的能力,加上有扎實的基本功還有什么題目難得倒我們。
復(fù)習(xí)課。
在數(shù)學(xué)學(xué)習(xí)過程中,要有一個清醒的復(fù)習(xí)意識,逐漸養(yǎng)成良好的復(fù)習(xí)習(xí)慣,從而逐步學(xué)會學(xué)習(xí)。數(shù)學(xué)復(fù)習(xí)應(yīng)是一個反思性學(xué)習(xí)過程。要反思對所學(xué)習(xí)的知識、技能有沒有達到課程所要求的程度;要反思學(xué)習(xí)中涉及到了哪些數(shù)學(xué)思想方法,這些數(shù)學(xué)思想方法是如何運用的,運用過程中有什么特點;要反思基本問題(包括基本圖形、圖像等),典型問題有沒有真正弄懂弄通了,平時碰到的問題中有哪些問題可歸結(jié)為這些基本問題;要反思自己的錯誤,找出產(chǎn)生錯誤的原因,訂出改正的措施。在新學(xué)期大家準(zhǔn)備一本數(shù)學(xué)學(xué)習(xí)“病例卡”,把平時犯的錯誤記下來,找出“病因”開出“處方”,并且經(jīng)常拿出來看看、想想錯在哪里,為什么會錯,怎么改正,通過你的努力,到中考時你的數(shù)學(xué)就沒有什么“病例”了。并且數(shù)學(xué)復(fù)習(xí)應(yīng)在數(shù)學(xué)知識的運用過程中進行,通過運用,達到深化理解、發(fā)展能力的目的,因此在新的一年要在教師的指導(dǎo)下做一定數(shù)量的數(shù)學(xué)習(xí)題,做到舉一反三、熟練應(yīng)用,避免以“練”代“復(fù)”的題海戰(zhàn)術(shù)。
數(shù)學(xué)知識點總結(jié)與思考篇二
相似比:相似多邊形對應(yīng)邊的比值。
2、相似三角形。
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個三角形的三組對應(yīng)邊的比相等,那么這兩個三角形相似;
如果兩個三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個三角形相似;
如果一個三角形的兩個角與另一個三角形的兩個角對應(yīng)相等,那么兩個三角形相似。
3相似三角形的周長和面積。
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似。
位似圖形:兩個多邊形相似,而且對應(yīng)頂點的連線相交于一點,對應(yīng)邊互相平行,這樣的兩個圖形叫位似圖形,相交的點叫位似中心。
數(shù)學(xué)知識點總結(jié)與思考篇三
1、重心的定義:平面圖形中,幾何圖形的重心是當(dāng)支撐或懸掛時圖形能在水平面處于平衡狀態(tài),此時的支撐點或者懸掛點叫做平衡點,也叫做重心。
2、幾種幾何圖形的重心:
(1)線段的重心就是線段的中點;
(2)平行四邊形及特殊平行四邊形的重心是它的兩條對角線的交點;
(3)三角形的三條中線交于一點,這一點就是三角形的重心;
(4)任意多邊形都有重心,以多邊形的任意兩個頂點作為懸掛點,把多邊形懸掛時,過這兩點鉛垂線的交點就是這個多邊形的重心。
提示:
(1)無論幾何圖形的形狀如何,重心都有且只有一個;
(2)從物理學(xué)角度看,幾何圖形在懸掛或支撐時,位于重心兩邊的力矩相同。
3、常見圖形重心的性質(zhì):
(1)線段的重心把線段分為兩等份;
(2)平行四邊形的重心把對角線分為兩等份;
(3)三角形的重心把中線分為1:2兩部分(重心到頂點距離占2份,重心到對邊中點距離占1份)。
上面對重心知識點的鞏固學(xué)習(xí),同學(xué)們都能熟練的掌握了吧,希望同學(xué)們很好的復(fù)習(xí)學(xué)習(xí)數(shù)學(xué)知識。
數(shù)學(xué)知識點總結(jié)與思考篇四
“靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。
“動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;。
1平角=2直角=180°;。
1直角=90°;。
1度=60分=3600秒(即:1°=60′=3600″);。
1分=60秒(即:1′=60″).
三、余角、補角的概念和性質(zhì):
概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。
如果兩個角的和是一個直角,那么這兩個角叫做互為余角。
說明:互補、互余是指兩個角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;。
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);。
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。
常見考法。
(1)考查與時鐘有關(guān)的問題;(2)角的計算與度量。
誤區(qū)提醒。
角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。
【典型例題】(20xx云南曲靖)從3時到6時,鐘表的時針旋轉(zhuǎn)角的度數(shù)是()。
【答案】3時到6時,時針旋轉(zhuǎn)的是一個周角的1/4,故是90度,本題選c.
數(shù)學(xué)知識點總結(jié)與思考篇五
3、一個數(shù)與0相加,仍得這個數(shù)。
有理數(shù)加法的運算律
1、加法的交換律:a+b=b+a;
2、加法的結(jié)合律:(a+b)+c=a+(b+c)
有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù);即a—b=a+(—b)
有理數(shù)乘法法則
1、兩數(shù)相乘,同號為正,異號為負(fù),并把絕對值相乘;
2、任何數(shù)同零相乘都得零;
3、幾個數(shù)相乘,有一個因式為零,積為零;各個因式都不為零,積的符號由負(fù)因式的個數(shù)決定。
數(shù)學(xué)知識點總結(jié)與思考篇六
把一個圖形繞某一點o轉(zhuǎn)動一個角度的圖形變換叫做旋轉(zhuǎn),其中o叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
2、性質(zhì)
(1)對應(yīng)點到旋轉(zhuǎn)中心的距離相等。
(2)對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角。
把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個點就是它的對稱中心。
2、性質(zhì)
(1)關(guān)于中心對稱的兩個圖形是全等形。
(2)關(guān)于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分。
(3)關(guān)于中心對稱的兩個圖形,對應(yīng)線段平行(或在同一直線上)且相等。
3、判定
如果兩個圖形的對應(yīng)點連線都經(jīng)過某一點,并且被這一點平分,那么這兩個圖形關(guān)于這一點對稱。
4、中心對稱圖形
把一個圖形繞某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形,這個店就是它的對稱中心。
考點五、坐標(biāo)系中對稱點的特征(3分)
1、關(guān)于原點對稱的點的特征
兩個點關(guān)于原點對稱時,它們的坐標(biāo)的符號相反,即點p(x,y)關(guān)于原點的對稱點為p’(―x,―y)
2、關(guān)于x軸對稱的點的特征
兩個點關(guān)于x軸對稱時,它們的坐標(biāo)中,x相等,y的符號相反,即點p(x,y)關(guān)于x軸的對稱點為p’(x,―y)
3、關(guān)于y軸對稱的點的特征
兩個點關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點p(x,y)關(guān)于y軸的對稱點為p’(―x,y)
大部分學(xué)生在學(xué)習(xí)中或多或少的都會積累一些問題,這些問題平時我們可能不是很在意,那么到了初二后就會突顯出來。首先新生在學(xué)習(xí)數(shù)學(xué)的時候常遇到的就是對于知識點的理解不到位,還停留在一知半解的層次上面。有的學(xué)生在解答數(shù)學(xué)題的時候始終不能把握解題技巧,也就是說學(xué)生缺乏對待數(shù)學(xué)的舉一反三能力。
還有的學(xué)生在解答數(shù)學(xué)題時效率太低,無法再規(guī)定的時間內(nèi)完成解題,對于初中的考試節(jié)奏還沒辦法適應(yīng)。一些學(xué)生還沒有養(yǎng)成一個總結(jié)歸納的習(xí)慣,不會歸納知識點,不會歸納錯題。這些都是導(dǎo)致學(xué)生學(xué)不好數(shù)學(xué)的原因。
1、一個圖形的面積等于它的各部分面積的和;
2、兩個全等圖形的面積相等;
5、相似三角形的面積比等于相似比的平方;
7、任何一條曲線都可以用一個函數(shù)y=f(x)來表示,那么,這條曲線所圍成的面積就是對x求積分。
數(shù)學(xué)知識點總結(jié)與思考篇七
0既不是正數(shù),也不是負(fù)數(shù)。
(2)正數(shù)和負(fù)數(shù)表示相反意義的量。
(1)數(shù)軸的三要素:原點、正方向、單位長度。數(shù)軸是一條直線。
(2)所有有理數(shù)都可以用數(shù)軸上的點來表示,但數(shù)軸上的點不一定都是有理數(shù)。
(3)數(shù)軸上,右邊的數(shù)總比左邊的數(shù)大;表示正數(shù)的點在原點的右側(cè),表示負(fù)數(shù)的點在原點的左側(cè)。
(2)相反數(shù):符號不同、絕對值相等的兩個數(shù)互為相反數(shù)。
若a、b互為相反數(shù),則a+b=0;
相反數(shù)是本身的是0,正數(shù)的相反數(shù)是負(fù)數(shù),負(fù)數(shù)的相反數(shù)是正數(shù)。
(3)絕對值最小的數(shù)是0;絕對值是本身的數(shù)是非負(fù)數(shù)。
最小的正整數(shù)是1,最大的負(fù)整數(shù)是-1。
兩個正數(shù)比較:絕對值大的那個數(shù)大;
兩個負(fù)數(shù)比較:先算出它們的絕對值,絕對值大的反而小。
(1)符號相同的兩數(shù)相加:和的符號與兩個加數(shù)的符號一致,和的絕對值等于兩個加數(shù)絕對值之和.
(2)符號相反的兩數(shù)相加:當(dāng)兩個加數(shù)絕對值不等時,和的符號與絕對值較大的加數(shù)的符號相同,和的絕對值等于加數(shù)中較大的絕對值減去較小的絕對值;當(dāng)兩個加數(shù)絕對值相等時,兩個加數(shù)互為相反數(shù),和為零.
(3)一個數(shù)同零相加,仍得這個數(shù).
轉(zhuǎn)載自 kaoYanMIJI.coM
加法的交換律:a+b=b+a
加法的結(jié)合律:(a+b)+c=a+(b+c)
減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
例如:14+12+(-25)+(-17)可以寫成省略括號的形式:14+12 -25-17,可以讀作“正14加12減25減17”,也可以讀作“正14、正12、負(fù)25、負(fù)17的和.”
兩個數(shù)相乘,同號得正,異號得負(fù),再把絕對值相乘;任何數(shù)與0相乘都得0。
第一步:確定積的符號 第二步:絕對值相乘
當(dāng)負(fù)因數(shù)有偶數(shù)個時,積為正。幾個有理數(shù)相乘,有一個因數(shù)為零,積就為零。
乘積為1的兩個數(shù)互為倒數(shù),0沒有倒數(shù)。
正數(shù)的倒數(shù)是正數(shù),負(fù)數(shù)的倒數(shù)是負(fù)數(shù)。(互為倒數(shù)的兩個數(shù)符號一定相同)
倒數(shù)是本身的只有1和-1。
數(shù)學(xué)知識點總結(jié)與思考篇八
“靜態(tài)”概念:有公共端點的兩條射線組成的圖形叫做角。
“動態(tài)”概念:角可以看作是一條射線繞其端點從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
如果一個角的兩邊成一條直線,那么這個角叫做平角;平角的一半叫直角;大于直角小于平角的角叫做鈍角;大于0小于直角的角叫做銳角。
二、角的換算:1周角=2平角=4直角=360°;
1平角=2直角=180°;
1直角=90°;
1度=60分=3600秒(即:1°=60′=3600″);
1分=60秒(即:1′=60″).
三、余角、補角的概念和性質(zhì):
概念:如果兩個角的和是一個平角,那么這兩個角叫做互為補角。
如果兩個角的和是一個直角,那么這兩個角叫做互為余角。
說明:互補、互余是指兩個角的數(shù)量關(guān)系,沒有位置關(guān)系。
性質(zhì):同角(或等角)的余角相等;
同角(或等角)的補角相等。
四、角的比較方法:
角的大小比較,有兩種方法:
(1)度量法(利用量角器);
(2)疊合法(利用圓規(guī)和直尺)。
五、角平分線:從一個角的頂點引出的一條射線。把這個角分成相等的兩部分,這條射線叫做這個角的平分線。
常見考法
(1)考查與時鐘有關(guān)的問題;(2)角的計算與度量。
誤區(qū)提醒
角的度、分、秒單位的換算是60進制,而不是10進制,換算時易受10進制影響而出錯。
【典型例題】(20xx云南曲靖)從3時到6時,鐘表的時針旋轉(zhuǎn)角的度數(shù)是( )
【答案】3時到6時,時針旋轉(zhuǎn)的是一個周角的1/4,故是90度 ,本題選c.
數(shù)學(xué)知識點總結(jié)與思考篇九
2、子集;。
3、補集;。
4、交集;。
5、并集;。
6、邏輯連結(jié)詞;。
7、四種命題;。
8、充要條件。
1、映射;。
2、函數(shù);。
3、函數(shù)的單調(diào)性;。
4、反函數(shù);。
5、互為反函數(shù)的函數(shù)圖象間的關(guān)系;。
6、指數(shù)概念的擴充;。
7、有理指數(shù)冪的運算;。
8、指數(shù)函數(shù);。
9、對數(shù);。
10、對數(shù)的運算性質(zhì);。
11、對數(shù)函數(shù)。
12、函數(shù)的應(yīng)用舉例。
1、數(shù)列;。
2、等差數(shù)列及其通項公式;。
3、等差數(shù)列前n項和公式;。
4、等比數(shù)列及其通頂公式;。
5、等比數(shù)列前n項和公式。
1、角的概念的推廣;。
2、弧度制;。
3、任意角的三角函數(shù);。
4、單位圓中的三角函數(shù)線;。
5、同角三角函數(shù)的基本關(guān)系式;。
6、正弦、余弦的誘導(dǎo)公式;。
7、兩角和與差的正弦、余弦、正切;。
8、二倍角的正弦、余弦、正切;。
9、正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);。
10、周期函數(shù);。
11、函數(shù)的奇偶性;。
12、函數(shù)的圖象;。
13、正切函數(shù)的圖象和性質(zhì);。
14、已知三角函數(shù)值求角;。
15、正弦定理;。
16、余弦定理;。
17、斜三角形解法舉例。
1、向量;。
2、向量的加法與減法;。
3、實數(shù)與向量的積;。
4、平面向量的坐標(biāo)表示;。
5、線段的定比分點;。
6、平面向量的數(shù)量積;。
7、平面兩點間的距離;。
8、平移。
1、不等式;。
2、不等式的基本性質(zhì);。
3、不等式的證明;。
4、不等式的解法;。
5、含絕對值的不等式。
1、直線的.傾斜角和斜率;。
2、直線方程的點斜式和兩點式;。
3、直線方程的一般式;。
4、兩條直線平行與垂直的條件;。
5、兩條直線的交角;。
6、點到直線的距離;。
7、用二元一次不等式表示平面區(qū)域;。
8、簡單線性規(guī)劃問題;。
9、曲線與方程的概念;。
10、由已知條件列出曲線方程;。
11、圓的標(biāo)準(zhǔn)方程和一般方程;。
12、圓的參數(shù)方程。
1、橢圓及其標(biāo)準(zhǔn)方程;。
2、橢圓的簡單幾何性質(zhì);。
3、橢圓的參數(shù)方程;。
4、雙曲線及其標(biāo)準(zhǔn)方程;。
5、雙曲線的簡單幾何性質(zhì);。
6、拋物線及其標(biāo)準(zhǔn)方程;。
7、拋物線的簡單幾何性質(zhì)。
1、平面及基本性質(zhì);。
2、平面圖形直觀圖的畫法;。
3、平面直線;。
4、直線和平面平行的判定與性質(zhì);。
5、直線和平面垂直的判定與性質(zhì);。
6、三垂線定理及其逆定理;。
7、兩個平面的位置關(guān)系;。
8、空間向量及其加法、減法與數(shù)乘;。
9、空間向量的坐標(biāo)表示;。
10、空間向量的數(shù)量積;。
11、直線的方向向量;。
12、異面直線所成的角;。
13、異面直線的公垂線;。
14、異面直線的距離;。
15、直線和平面垂直的性質(zhì);。
16、平面的法向量;。
17、點到平面的距離;。
18、直線和平面所成的角;。
19、向量在平面內(nèi)的射影;。
20、平面與平面平行的性質(zhì);。
21、平行平面間的距離;。
22、二面角及其平面角;。
23、兩個平面垂直的判定和性質(zhì);。
24、多面體;。
25、棱柱;。
26、棱錐;。
27、正多面體;。
28、球。
1、分類計數(shù)原理與分步計數(shù)原理;。
2、排列;。
3、排列數(shù)公式;。
4、組合;。
5、組合數(shù)公式;。
6、組合數(shù)的兩個性質(zhì);。
7、二項式定理;。
8、二項展開式的性質(zhì)。
1、隨機事件的概率;。
2、等可能事件的概率;。
3、互斥事件有一個發(fā)生的概率;。
4、相互獨立事件同時發(fā)生的概率;。
5、獨立重復(fù)試驗。
數(shù)學(xué)知識點總結(jié)與思考篇十
1、買文具---(小面額的人民幣)。
2、買衣服---(大面額的人民幣)。
3、小小商店---(進行有關(guān)錢款的簡單計算)。
買文具(小面額的人民幣)。
1、認(rèn)識各種小面額的人民幣。
2、體會小面額人民幣之間的換算關(guān)系。
3、從實際問題中理解“付出的錢、應(yīng)付的錢、應(yīng)找回的錢”三者之間的關(guān)系。
4、在購物情景中進行有關(guān)錢款的簡單計算。
買衣服(大面額的人民幣)。
1、讓學(xué)生在活動中認(rèn)識大面額的人民幣,能從相同點和不同點上辨認(rèn)。
2、會計算大面額人民幣之間的換算。
3、在購物活動中體會大面額人民幣的作用,運用人民幣的兌換知識,初步掌握付錢的方法。
小小商店(進行有關(guān)錢款的簡單計算)。
1.在購物情景中會進行有關(guān)錢款的簡單計算。
2.通過購物中的活動,了解付費的方式是多樣化的。
3.通過購物的活動,鞏固復(fù)習(xí)100以內(nèi)的加減法計算。
4.購物中能解決一些簡單的實際問題。
數(shù)學(xué)知識點總結(jié)與思考篇十一
三忌“好高騖遠,忽視雙基”
很多同學(xué)都知道好高務(wù)遠就是眼高手低、不自量力的代名詞,但卻不知道什么是好高騖遠。
有的同學(xué)由于自己覺得成績很好,所以,總認(rèn)為基礎(chǔ)的東西,太簡單,研究雙基是浪費時間;有的同學(xué)對自己的定位較高,認(rèn)為自己研究的應(yīng)該是那些高于其它同學(xué)的,別人覺得有困難的東西;有的同學(xué)總是嫌老師講得太簡單或者太慢,甚至有的同學(xué)成績不怎么樣,也瞧不起基礎(chǔ)的東西。其實,這些都是好高騖遠。
最深刻的道理,往往存在于最簡單的事實之中。一切高樓大廈都是平地而起的,一切高深的理論,都是由基礎(chǔ)理論總結(jié)出來的。同學(xué)們可以仔細(xì)地分析老師講的課,無論是多難的題目,最后總是深入淺出,歸結(jié)到課本上的知識點,無論是多簡單的題目,總能指出其中所蘊藏的科學(xué)道理,而大多數(shù)同學(xué),只聽到老師講的是題目,常常認(rèn)為此題已懂,不需要再聽,而忽略了老師闡述“來自基礎(chǔ),回歸基礎(chǔ)”的道理的關(guān)鍵地方。所以大家一定要重視雙基,千萬別好高務(wù)遠。
四忌“敷衍了事,得過且過”
以下是對某校屆高三300名同學(xué)關(guān)于作業(yè)問題的兩項調(diào)查:(數(shù)值為人數(shù)比例:做到的/總?cè)藬?shù))。
你做作業(yè)是為了什么?
檢測自己究竟學(xué)會了沒有占91/30.33%。
因為老師要檢查占143/47.67%。
怕被家長、老師批評的占38/12.67%。
說不清什么原因占28/9.33%。
你的作業(yè)是怎樣完成的?
復(fù)習(xí),再聯(lián)系課上內(nèi)容獨立完成占55/18.33%。
數(shù)學(xué)知識點總結(jié)與思考篇十二
則有以下五種關(guān)系:
1、dr+r兩圓外離;兩圓的圓心距離之和大于兩圓的半徑之和。
2、d=r+r兩圓外切;兩圓的圓心距離之和等于兩圓的半徑之和。
3、d=r—r兩圓內(nèi)切;兩圓的圓心距離之和等于兩圓的半徑之差。
4、d。
5、d。
1、無公共點,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含。
2、有唯一公共點的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切。
3、有兩個公共點的叫相交。兩圓圓心之間的距離叫做圓心距。
數(shù)學(xué)知識點總結(jié)與思考篇十三
1、直接法:
直接根據(jù)題設(shè)條件構(gòu)建關(guān)于參數(shù)的不等式,再通過解不等式確定參數(shù)范圍。
2、分離參數(shù)法:
先將參數(shù)分離,轉(zhuǎn)化成求函數(shù)值域問題加以解決。
3、數(shù)形結(jié)合法:
先對解析式變形,在同一平面直角坐標(biāo)系中,畫出函數(shù)的圖象,然后數(shù)形結(jié)合求解。
數(shù)學(xué)知識點總結(jié)與思考篇十四
【內(nèi)容解讀】了解向量的實際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。
注意對向量概念的理解,向量是可以自由移動的,平移后所得向量與原向量相同;兩個向量無法比較大小,它們的模可比較大小。
【內(nèi)容解讀】向量的運算要求掌握向量的加減法運算,會用平行四邊形法則、三角形法則進行向量的加減運算;掌握實數(shù)與向量的積運算,理解兩個向量共線的含義,會判斷兩個向量的平行關(guān)系;掌握向量的數(shù)量積的運算,體會平面向量的數(shù)量積與向量投影的關(guān)系,并理解其幾何意義,掌握數(shù)量積的坐標(biāo)表達式,會進行平面向量積的運算,能運用數(shù)量積表示兩個向量的夾角,會用向量積判斷兩個平面向量的垂直關(guān)系。
【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運算,有時也會與其它內(nèi)容相結(jié)合。
【內(nèi)容解讀】掌握線段的定比分點和中點坐標(biāo)公式,并能熟練應(yīng)用,求點分有向線段所成比時,可借助圖形來幫助理解。
【命題規(guī)律】重點考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目。
【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識,三角函數(shù)的知識,達到了高考中試題的覆蓋面的要求。
【命題規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。
【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍。
【命題規(guī)律】命題多以解答題為主,屬中檔題。
【內(nèi)容解讀】向量的坐標(biāo)表示實際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運算代數(shù)化,這樣就可以將“形”和“數(shù)”緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運算和向量運算,從而使問題得到解決.
【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。
戴氏航天學(xué)校老師總結(jié)加法與減法的代數(shù)運算:
(1)若a=(x1,y1),b=(x2,y2)則ab=(x1+x2,y1+y2).
向量加法與減法的幾何表示:平行四邊形法則、三角形法則。
兩個向量共線的充要條件:
(1)向量b與非零向量共線的充要條件是有且僅有一個實數(shù),使得b=.
(2)若=(),b=()則‖b.
數(shù)學(xué)知識點總結(jié)與思考篇十五
(2)導(dǎo)數(shù)的四則運算。
(3)復(fù)合函數(shù)的導(dǎo)數(shù)。
設(shè)在點x處可導(dǎo),y=在點處可導(dǎo),則復(fù)合函數(shù)在點x處可導(dǎo),且即。
1、數(shù)列的極限:
粗略地說,就是當(dāng)數(shù)列的項n無限增大時,數(shù)列的項無限趨向于a,這就是數(shù)列極限的描述性定義。記作:=a。如:
2、函數(shù)的極限:
1、在處的導(dǎo)數(shù)。
2、在的導(dǎo)數(shù)。
3、函數(shù)在點處的導(dǎo)數(shù)的幾何意義:
函數(shù)在點處的導(dǎo)數(shù)是曲線在處的切線的斜率,
即k=,相應(yīng)的切線方程是。
注:函數(shù)的導(dǎo)函數(shù)在時的函數(shù)值,就是在處的`導(dǎo)數(shù)。
例、若=2,則=()a—1b—2c1d。
(一)曲線的切線。
函數(shù)y=f(x)在點處的導(dǎo)數(shù),就是曲線y=(x)在點處的切線的斜率。由此,可以利用導(dǎo)數(shù)求曲線的切線方程。具體求法分兩步:
(1)求出函數(shù)y=f(x)在點處的導(dǎo)數(shù),即曲線y=f(x)。
(2)在已知切點坐標(biāo)和切線斜率的條件下,求得切線方程為x。
數(shù)學(xué)知識點總結(jié)與思考篇十六
函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。
數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。
不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。
概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
空間位置關(guān)系的定性與定量分析。主要是證明平行或垂直,求角和距離。主要考察對定理的熟悉程度、運用程度。
解析幾何。高考的難點,運算量大,一般含參數(shù)。
高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點,扎實的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。
掌握分類計數(shù)原理與分步計數(shù)原理,并能用它們分析和解決一些簡單的應(yīng)用問題。
理解排列的意義,掌握排列數(shù)計算公式,并能用它解決一些簡單的應(yīng)用問題。
理解組合的意義,掌握組合數(shù)計算公式和組合數(shù)的性質(zhì),并能用它們解決一些簡單的應(yīng)用問題。
掌握二項式定理和二項展開式的性質(zhì),并能用它們計算和證明一些簡單的問題。
了解隨機事件的發(fā)生存在著規(guī)律性和隨機事件概率的意義。
了解等可能性事件的概率的意義,會用排列組合的基本公式計算一些等可能性事件的概率。
了解互斥事件、相互獨立事件的意義,會用互斥事件的概率加法公式與相互獨立事件的概率乘法公式計算一些事件的概率。
會計算事件在n次獨立重復(fù)試驗中恰好發(fā)生k次的概率。
數(shù)學(xué)知識點總結(jié)與思考篇十七
1、靜態(tài)的觀點有兩個平行的平面,其他的面是曲面;動態(tài)的觀點:矩形繞其一邊旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,象這樣的旋轉(zhuǎn)體稱為圓柱。
2、定義:以矩形的一邊所在直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的的曲面所圍成的旋轉(zhuǎn)體叫做圓柱,旋轉(zhuǎn)軸叫圓柱的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面叫做圓柱的底面;平行于圓柱軸的邊旋轉(zhuǎn)而成的面叫圓柱的側(cè)面,圓柱的側(cè)面又稱圓柱的面。無論轉(zhuǎn)到什么位置,不垂直于軸的邊都叫圓柱側(cè)面的母線。
表示:圓柱用表示軸的字母表示。
規(guī)定:圓柱和棱柱統(tǒng)稱為柱體。
3、靜態(tài)觀點:有一平面,其他的面是曲面;動態(tài)的觀點:直角三角形繞其一直角旋轉(zhuǎn)形成的面圍成的旋轉(zhuǎn)體,像這樣的旋轉(zhuǎn)體稱為圓錐。
4、定義:以直角三角形的一條直角邊所在的直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)而形成的面所圍成的旋轉(zhuǎn)體叫做圓錐。旋轉(zhuǎn)軸叫圓錐的軸;垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的圓面成為圓錐的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫圓錐的側(cè)面,圓錐的側(cè)面又稱圓錐的面,無論旋轉(zhuǎn)到什么位置,這條邊都叫做圓錐側(cè)面的母線。
表示:圓錐用表示軸的字母表示。
規(guī)定:圓錐和棱錐統(tǒng)稱為錐體。
5、定義:以半直角梯形垂直于底邊的腰所在的直線為旋轉(zhuǎn)軸,其余各邊旋轉(zhuǎn)而形成的曲面所圍成的幾何體叫圓臺。還可以看成用平行于圓錐底面的平面截這個圓錐,截面于底面之間的部分。旋轉(zhuǎn)軸叫圓臺的軸。垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而形成的圓面稱為圓臺的底面;不垂直于旋轉(zhuǎn)軸的邊旋轉(zhuǎn)而成的曲面叫做圓臺的側(cè)面,無論轉(zhuǎn)到什么位置,這條邊都叫圓臺側(cè)面的母線。
表示:圓臺用表示軸的字母表示。
規(guī)定:圓臺和棱臺統(tǒng)稱為臺體。
6、定義:以半圓的直徑所在的直線為旋轉(zhuǎn)軸,將半圓旋轉(zhuǎn)一周所形成的曲面稱為球面,球面所圍成的旋轉(zhuǎn)體稱為球體,簡稱為球。半圓的圓心稱為球心,連接球面上任意一點與球心的線段稱為球的半徑,連接球面上兩點并且過球心的線段稱為球的直徑。
表示:用表示球心的字母表示。
簡單組合體的結(jié)構(gòu):
1、`由簡單幾何體組合而成的幾何體叫簡單組合體。現(xiàn)實世界中,我們看到的物體大多由具有柱、錐、臺、球等幾何結(jié)構(gòu)特征的物體組合而成。如教材圖1.1-11的前兩個圖形,他們是多面體與多面體的組合體;1.1-11的后兩個圖形,他們是由一個多面體從中截去一個或多個多面體得到的組合體。
2、常見的組合體有三種:多面體與多面體的組合;多面體與旋轉(zhuǎn)體的組合;旋轉(zhuǎn)體與旋轉(zhuǎn)體的組合。其基本形式實質(zhì)上有兩種:一種是由簡單幾何體拼接而成的簡單組合體;另一種是由簡單簡單幾何體截去或挖去一部分而成的簡單組合體。
將本文的word文檔下載到電腦,方便收藏和打印。
數(shù)學(xué)知識點總結(jié)與思考篇十八
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
下面是對數(shù)學(xué)中因式分解內(nèi)容的知識講解,希望同學(xué)們認(rèn)真學(xué)習(xí)。
數(shù)學(xué)知識點總結(jié)與思考篇十九
1、課前預(yù)習(xí):首先上課前要做預(yù)習(xí),課前預(yù)習(xí)能提前了解將要學(xué)習(xí)的知識。
2、記筆記:指的是課堂筆記,每節(jié)課時間有限,老師一般講的都是精華部分。
3、課后復(fù)習(xí):通預(yù)習(xí)一樣,也是行之有效的方法。
4、涉獵課外習(xí)題:多涉獵一些課外習(xí)題,學(xué)習(xí)它們的解題思路和方法。
5、學(xué)會歸類總結(jié):學(xué)習(xí)數(shù)學(xué)記得東西很多,如果單純的記憶每個公式,不但增加記憶量而且容易忘。
6、建立糾錯本:把經(jīng)常出錯的.題目集中在一起。
7、寫考試總結(jié):考試總結(jié)可以幫助找出學(xué)習(xí)之中不足之處,以及知識的薄弱環(huán)節(jié)。
8、培養(yǎng)學(xué)習(xí)興趣:興趣是最好的老師,只有有了興趣才會自主自發(fā)的進行學(xué)習(xí),學(xué)習(xí)效率才會提高。